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Relaxation e m . s  observed for turbulent 
flow over a wavy surface 
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Measurements are presented for different flow rates of the time-averaged wall shear 
stress and of the root-mean-square value of the turbulent fluctuations along a small- 
amplitude sinusoidally shaped solid surface. The stresses are found to have a variation 
along the wave surface which is also sinusoidal. The influence of flow rate and of 
wavelength on the amplitude and phase angle can be correlated by using a wave- 
number a+ made dimensionless with wall parameters. 

a frozen-turbulence assumption can be made whereby 
the influence of the wave-induced variation of the mixing length can be ignored. For 
a+ < the flow can be described by assuming the Reynolds stresses are given by 
an equilibrium assumption. The relaxation from this equilibrium condition is 
characterized by a sharp change in the phase angle for 6 x 

This relaxation is associated with physical processes in the viscous wall region 
which are not yet understood. It is argued that these are principally related to the 
wave-induced variation of the pressure gradient. 

The wave-induced variation of the turbulent fluctuations in the wall shear stress 
also indicate a relaxation in that the maximum turbulence intensity is located in a 
region of favourable pressure gradient. 

It is found that for a+ > 

< a+ < 

1. Introduction 
When a turbulent fluid flows over a sinusoidal solid wave a spatial variation of the 

pressure and the shear stress will occur at the surface. If the wave is of small enough 
amplitude a linear response can be expected in that all hydrodynamic variables are 
described by a single harmonic whose amplitude varies linearly with the wave 
amplitude. 

The critical problem in describing the wavc-induced flow is the prediction of the 
effect of the waves on the turbulence. Two principal differences from flow over a flat 
surface are that the waves induce large sinusoidal variations in the pressure gradient 
and in the streamline curvature close to the surface. A t  present no completely 
satisfactory methods are available to deal with these effects. 

In previous work from this laboratory (Thorsness, Morrisroe & Hanratty 1978; 
Zilker, Cook & Hanratty 1977) it was shown that measurements of the shear-stress 
variation along a solid wavy surface provide a particularly sensitive test of turbulence 
models for the viscous wall region. Results obtained by Thorsness et al. (1978) could 
be described by the modified van Driest model used by Loyd, Moffat & Kays (1970). 
The most interesting aspect of this model is that it predicts a relaxation whereby the 
turbulence processes in the viscous wall layer change from a frozen to an equilibrium 
condition over a small range of dimensionless wavenumbers a+ = 2xv/Av*, where z1* 

is a friction velocity defined using the wavelength-averaged wall shear stress (T,). 
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Experimental results were, however, at values of u+ that are too large to verify this 
prediction of a sharp relaxation. 

This paper presents new measurements of the shear-stress variation along a small- 
amplitude wavy surface, which cover a wide enough range of a+ to examine this 
relaxation effect. They were obtained in a rectangular channel, 5.08 cm high and 
61 cm wide, far enough downstream that the flow was fully developed. The bottom 
wall contained a train of solid waves with the same dimensions used by Thorsness 
et al. The wavelength was 5.08 cm and the amplitude a, equal to half the peak-to-crest 
distance, was 0.0356 cm. The range of a+ was extended by studying a wider range of 
liquid flow rates. 

Measurements were made of the variation along the wave surface of the time- 
averaged velocity gradient and of the root mean square of the turbulent fluctuations 
in the velocity gradient. This was done by using an electrochemical technique 
developed in this laboratory by Reiss t Hanratty (1962, 1963) and by Mitchell & 
Hanratty (1966). 

2. Interpretation 

coordinates as 
The profile of the wave surface that was studied can be represented in Cartesian 

(1) 

The presence of such a boundary causes a periodic variation of the time-averaged 
velocity field, and of the pressure P, and shear stress 7, at the wall. For a linear 
response, 

(2) 

Y, = a cos (UX). 

t, = (t,) +a  1 .i, I cos (ax+e,), 

Here a I f, I, a I $, I are the amplitudes of the wave-induced stress variations at the 
wall and O,, 8, are the number of degrees by which the maxima precede the wave 
crest. 

The variation of t, along the wave surface is calculated by solving the linear 
momentum equations. For this purpose, a boundary-layer coordinate system is used 
in which the x-coordinate is parallel to the wave surface and the y-coordinate is 
perpendicular to it. The wave profile is represented aa 

Y, = a eiaz, (4) 

and a stream function 

@ = s” <g(y))dy+aF(y)eiaZ, (5) 
0 

with (U(y)> being the velocity profile measured for a flat surface, is defined so that 
the time-average velocities in the x- and y-directions are given by 

where hz and h, are the linearized metric functions for the boundary-layer coordinate 
system : 

hz = 1 +aaayeiaZ, h, = 1. (7) 
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From the x and y momentum balances the following equation is obtained for F: 

d2F 
(8) 

The terms on the left-hand side are the inertia terms associated with the wave-induced 
flow, with a2( 0 2  representing a centripetal acceleration associated with the use of 
a curvilinear coordinate system. The terms in the brackets on the right-hand side arise 
because of viscous stresses. The term W contains the wave-induced variation of 
the Reynolds stresaes r,., r,, and rug: 

with ri, = atg5 eiaz + ( fg,). (10) 

Equation (8) is solved subject to the boundary condition of zero velocity at the wave 

surface, d F  
0, (11) F = - = O  s t y =  

dY 

and the condition of parallel flow far from the surface, 

at large y. 
dF d(0)  P = ( 0 > ,  -- -- 
dY dY 

From the solutions of (8), the wall shear stress and pressure can be calculated since, 
a t y = O :  

The principal problem in solving (8) is the specification of W. We have used a 
mixing-length model to describe the turbulent stresses : 

with gi5 being the rate-of-strain tensor. The effect of streamline curvature can be 
taken into account by modifying the mixing-length in a manner suggested by 
Bradshaw (1973) : 

Here /I, is an empirical constant and Ri, is the curvature Richardson number defined 
as 

I = 2,(1 -/9,Ric). (19) 

with 1/R, being the curvature of the streamlines. 

16-2 
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The term K is the von KBrman constant and the argument of the exponential term 
in (17) is a damping factor which allows for a rapid decrease of the mixing length 
in the viscous wall region. For equilibrium boundary layers Loyd et al. (1970) suggest 
the following functional dependence of A on pressure gradient : 

with k, = - 30. Equation (21) makes use of the concept that turbulence in the viscous 
wall region is enhanced in unfavourable pressure gradients and decreased in favour- 
able pressure gradients. 

For small-amplitude waves with negligible effects of curvature an equilibrium 
assumption can be made for very small a: 

&j = 2 ( V T )  4j+24(sij), 

It is noted from (24) that wave-induced variations of the mixing length lo are only 
important in the viscous wall region. Within the framework of the van Driest 
equation these effects are interpreted as a thickening or thinning of the viscous wall 
region caused by wave-induced variations of the shear stress and of the pressure 
gradient. 

For very large a+ the wave-induced variations of the flow are confined to a region 
close to the wave surface. If a+ is large enough this region is so thin that viscous 
stresses dominate over turbulent stresses and a quasi-laminar assumption can be 
made, (+$,) = 0. However, a less restrictive assumption can be made if it  is assumed 
that certain aspects of the turbulence are frozen. In  particular, this concept is applied 
only to the viscous wall region by assuming at large u+ that 

to = 0, (26) 

ti, = 4( vt) d , .  (27 ) 

It is assumed that the relaxation from an equilibrium to a frozen condition is 
described by a single rate constant. A t  intermediate a it is argued that an effective 
wave-induced damping function, dMeff rather than dM, should be used in the 
momentum equations. This is represented by a simple first-order rate equation 

where k, is the relaxation constant. From (28) one obtains 

For large values of a+k&, dMeff = 0 and (29) represents a frozen turbulence (to = 0) 
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model. For a+ k& very small, d,,,, = d, and (29) represents an equilibrium situation. 
In the range of a+ given by 

a+k& z 1, (30) 

a change from an equilibrium to a frozen condition is initiated. 
Our experiments have involved the measurement of the variation of the time- 

averaged wall shear stress, Tw(x), and of the root-mean-square value of the turbulent 
fluctuations, 7&(z), for different values of the dimensionless wavenumber a+. 

3. Description of the experiments 
The flow loop, sketched in figure 1, was originally built by Cook (1970) and later 

modified. The principal change that had to be made for the experiments described 
in this paper is the installation of new pumping capacity and of large-diameter piping 
in order to obtain larger flows, up to 170 l/s. The rectangular flow channel has a cross- 
section of 5.08 x 61 cm and a length of 838 cm. 

Provision was made to replace a 68.6 cm length of the bottom wall a t  the 
downstream end of the channel with a wall containing a train of ten waves. The waves 
were cut into a rectangular section of Plexiglas using specially designed cutting tools. 

The pattern of 0.635 mm holes shown in figure 2 was drilled into the wave section. 
Platinum electrodes, 0.508 mm in diameter, were epoxyed into these holes. When the 
epoxy was dry, the portions of the wires protruding from the surface were filed flush 
with the surface. The surface was then smoothed with progressively finer grades of 
sandpaper and polishing compounds. On completion of the polishing, the profile of 
the waves was measured using a dial indicator. 

The shear-stress measurements were made over the sixth, eighth and ninth waves. 
No differences were observed in the measurements obtained from these three waves. 
Figure 3 shows the measured profile for the ninth wave. The amplitude of each wave 
was obtained by doing a least-squares fit of a sine wave to the profile. Information 
on the profiles of the other waves, together with a detailed description of the method 
of fabrication, is contained in a thesis by one of the authors (Abrams 1984). 

The platinum wires flush with the wave surface were cathodes in an electrolysis 
cell. An electrolyte, 0.0015 M in I; and 0.2 M in KI, was circulated through the system. 
A potential difference was established between the cathode and the anode and the 
following reactions occurred : 

1; + 2e- + 31- (cathode), 

(anode) 31- + I; + 2e- 

At  a high enough voltage the reaction rate at the cathode was so rapid that the 
concentration of I; at the cathode surface was zero and the current I flowing through 
the electrolysis circuit was controlled by the rate of mass transfer of I; to the cathode 
surface. Under these conditions the time-averaged current I was related to the time- 
averaged wall shear stress by the equation 

I =  CTk. (31) 

The fluctuations in the current were related to the fluctuations in the shear stress 
as follows : 

The constant in (31) was calculated from physical properties of the electrolyte and 
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t f  3 7 

I 1  11-43 m 

15-24m pipe 
0 20-32 cm pine 

FIQURE 1. Equipment used in the study of flow over solid wavy surfaces. 1, Downstream rectangular 
to round diffuser; 2, removable wave surface ; 3, test section ; 4, channel ; 5, honeycomb ; 0, upstream 
rectangular to round diffuser, 7, annubar flow meter; 8, butterfly throttling valve; 9, removable 
blanking plate; 10, diaphragm valve; 11, small pump; 12, by-pass diaphragm valve; 13, large pump ; 
14, cooling coils; 15, reservoir tank. 

19.05 cm 
34.29 cm 

I I==- 44.45 cm 

crest 3 Crest 6 Crest 8 

R, 73.66 cm - 

FIQURE 2. Pattern of holes for the electrodes. 
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FIGURE 3. Wave profile. 
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the measured area of the test electrode from the following equation given by Mitchell 
& Hanratty (1966) : 

Dn, FA, CB ( - ;L)i 
L 

C = 0.807 (33) 

Here D is the diffusion coefficient, F Farday’s constant, n, the number of electrons 
involved, A,  the electrode area, CB the bulk concentration of the reacting species and 
L the effective electrode length. 

The electronic equipment used to measure the current and other details regarding 
this technique are given in a review article by Hanratty & Campbell (1983). 

Values of the pressure gradient in the channel with a flat wall for the test section, 
reported by Thorsness et al. (1978), are in good agreement with literature values. 
Velocity measurements made over a flat wall for y+ 2 30 obtained by Zilker (1976) 
for large flow rates exhibit the logarithmic behaviour 

u 1  - = -ln(y+)+5.1 
v* 0.41 (34) 

suggested by Kline, Morkovin & Cockrell (1969). 
The meter used to measure flow rates was calibrated by integrating these measured 

velocity profiles. A bulk velocity is defined as if the velocity profile at the centre of 
the channel existed over the whole cross-section: 

where h is the half-width of the channel and o i s  the average velocity at a distance 
y from the surface. The Reynolds number used to characterize the flow is then 

R e = - .  w3 
V 

Typical measured profiles of 7,/(7,) and of (~2):/(7,> are shown in figure 4. The 
solid lines represent a least-square fit of a sinusoidal curve to the data. It is to be 
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FIGURE 4. Typical measurements of the mean wall shear stress FW/(Tw) and the root mean 
square of the fluctuations in the wall shear stress mi/(?,), for a+ = av/v* = 0.00566. 

noted that the maximum in both cases is upstream of the wave crest. From this least- 
squares fit, the amplitudes and the phase angles characterizing the spatial variation 
of the wall shear stress and the fluctuations in the wall shear stress are calculated. 

4. Results 
4.1. Measurements of F,(x) 

The phase angles 8, and the amplitudes lfwl, made dimensionless using (?,) and 
the friction length v/v*, are plotted against the dimensionless wavenumber a+ in 
figures 5 and 6. The results on 8, fall into a range of a+ where neither the frozen 
turbulence nor the equilibrium model predict the phase angle. For a+ > 0.003 the 
amplitude agrees with predictions using a frozen-turbulence assumption, but the 
values of a+ covered in the experiments were too large to  observe equilibrium 
behaviour. 

The most striking result is the sharp decrease in the phase angle 0, in the range 
of a+ = 6 x 10-4-10-3. Previous experiments from this laboratory (Thorsness et al. 
1978) covered the range a+ = 0.002-0.01 and therefore did not indicate this 
relaxation phenomenon. Our most recent experiments covered the range 
a+ = 6 x 10-4-10-2. In the region of overlap with previous work excellent agreement 
is noted. Also there is reasonably good agreement with results obtained by Kendall 
(1970), Hsu & Kennedy (1971) and Sigal (1970). 

The relaxation theory with k$ = 1650 and k, = - 33 describes the measured phase 
angle and amplitude of the wall shear-stress variation quite well. It is noted that in 
the range 0.000 15 < a+ < 0.002 the theory not only predicts the observed sharp 
change in 8, but also the observed low values of I ?w 1, compared to the equilibrium 
model or the frozen-turbulence model. This fit of the relaxation model enables us to 
extrapolate our measurements. From this extrapolation we find that the equilibrium 
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Equilibrium turbulence model 
k,  = -33, k& = 0 

1 I I I l l  

0.00001 o.Oo01 0.001 0.01 0.1 1 .o 
a+ = av/v* 

PICURE 5. The phase angle characterizing the variation of the wall 
shear stress as a function of the dimensionless wavenumber. 

100 I I I I 

Frozen turbulence 

Relaxation theory 
k ,  = -33, k& = 1650 

Quasi-laminar model 

0.00001 o.Ooo1 ').001 0.01 0.1 1 .o 
a+ = a v / v *  

FIGTJRE 6. The amplitude characterizing the variation of the wall 
shear stress as a function of the dimensionless wavenumber. 
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k-E model 0 
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FIQURE 7. Measured phase angles characterizing the variation of the 
root mean square of the fluctuations in the wall shear stress. 

0.1 

0 I 

II 0.01 

0.001 
o.Oo01 0.001 0.01 

a+ = av/v* 

FIQURE 8. Measured amplitudes characterizing the variation of the 
root mean square of the fluctuations in the wall shear stress. 

model will be valid for a+ < 
a+ > 2 x 
describes the phase angles only for a+ > 0.6. 

and that the frozen-turbulence model is valid for 
It is also to be noted from figure 5 that  the quasi-laminar assumption 

4.2. Measurements of 

The phase angles and amplitudes characterizing the measured variation of with 
x are shown in figures 7 and 8. It is noted that the amplitude decreases strongly with 
decreasing a+. I n  fact it became so small that  measurements could not be made for 
a+ < 0.0025. 



Turbulent flow over a wavy surface 453 

The most noteworthy aspect of these results is that the maximum in the 
wave-induced variation occurs in a region of favourable pressure gradient. This 
is the opposite of what would be expected for an equilibrium situation and, con- 
sequently, is another manifestation of the relaxation of the turbulence observed for 
a+ > 0.00015. 

Also of interest are the large values of the wave-induced variation of turbulent shear- 
stress fluctuations at a+ rz 0.01, where a quasi-laminar model appears to give good 
agreement between predicted and measured values of I fw I (see figure 6). This would 
suggest that, if a completely frozen turbulence assumption is strictly applicable, much 
larger values of a+ than 0.01 would be required. This is one of the reasons why we 
chose to describe our measurements by relaxing only the wave-induced variation 2, 
in the mixing length. However it is likely, as pointed out by Thorsness et al. (1978), 
that there is a large range of a+ for which +$, =I= 0 but for which inertia effects and 
viscous stresses are much larger than turbulence stresses so that the assumption of 
ti, = 0 gives good results, even though it is not correct. 

More measurements at values of a+ larger than 0.01 are clearly needed. However, 
it should be pointed out that the interpretation of the measurements presented in 
this paper is not affected by relaxing between an equilibrium condition and a 
quasi-laminar condition (as waa done in the thesis by Abrams 1984), instead of 
between an equilibrium condition and a frozen mixing-length assumption (as is done 
here). 

5. Discussion 
The most important contribution of this paper is the demonstration of a relaxation 

phenomenon which occurs for flow over a wavy surface for a+ > O.OO0 15. Thorsness 
et al. (1978) have already demonstrated that wave-induced variations in the Reynolds 
stresses for y+ > 40 have little effect on 7,(z) for a+ > 0.00015. Consequently it is 
assumed that this relaxation is a property of physical processes in the viscous wall 
region. 

In  figure 9 we compare our measured values of 8, to calculations in which the 
influence of wave-induced variations of the streamline curvature and the influence 
of pressure gradient on the van Driest viscous length parameter (k, = 0, k& = 1650) 
are neglected. Poor agreement is noted. Abrams (1984) has shown that streamline 
curvature can have only a small effect on 7,(x). Consequently, we conclude that the 
observed relaxation effect is associated with the wave-induced variation of the 
pressure gradient; i.e. a non-zero value of k, is needed. 

We recognize that the method used to describe the effect we observed is not 
satisfactory. This is particularly true with the empirical manner in which relaxation 
effects are introduced. In  this sense a two-equation model, of the k-s type, is more 
satisfactory. The influence of pressure gradient then comes about because of its 
influence on the shear-stress variation and, therefore, the turbulence production. Thus 
relaxation is introduced in a more natural way. However, we have found that 
presently available formulations of the k-e model do not adequately describe our 
measurements. 

This is shown in figures 9 and 10, where we compare calculations of ?,(x) using 
the modification of the Jones & Launder (1973) formulation presented by Chen (1980) 
to measurements. The dependence of 8, and I fw I on a+ are not properly represented. 

No measurements were made of the z-component of the turbulent shear-stress 
fluctuations at the wavy wall. For turbulent flow over a flat plate the neglect of the 
z-component of the turbulent velocity fluctuations would introduce only a 10 yo error 
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FIGURE 9. Comparison of measurements of the phase angle characterizing 
the variation of the wall shear stress with various models. 

FIGURE 10. Comparison of measurements of the amplitude characterizing 
the variation of the wall shear stress with various models. 

in the calculation of the turbulent kinetic energy k close to the wall. Consequently, 
measurements of ( 7 3 2 ) ) :  are compared to  calculations using the k-s model by 
assuming that in the immediate vicinity of the wall k 1: *"'2. The comparison of the 
calculated amplitude and phase of the wave-induced variation of the turbulent 
shear-stress fluctuations with measurements, shown in figure 7 and 8, gives some 
interesting similarities. Large values of the amplitude of turbulent fluctuations are 
calculated at large a+ and the calculated phase angles indicate that the maximum 
energy occurs in a region of favourable pressure gradient. 

This work is being supported by the ONR under Grant NOOO14-88-82-12-0324 by 
the Shell Companies Foundation. 
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